Matematika

Pertanyaan

tentukan himpunan penyelesaian dari sistem persamaan linear dibawah ini dengan menggunkan metode eliminasi. a. 2x - y = 14
x + 3y = 0
B. 3x - y = 5
X + 3y = 5
C. 5x + 2y = 3
3x + 2y = 3
D. X + y = 3
X + 2y = 1

1 Jawaban

  • Himpunan penyelesaian dari sistem persamaan linear berikut :

    a. 2x - y = 14 dan x + 3y = 0 adalah HP : {6, -2}.

    b. 3x - y = 5 dan x + 3y = 5 adalah HP : {2, 1}.

    c. 5x + 2y = 3 dan 3x + 2y = 3 adalah HP : {0, ³/₂}.

    d. x + y = 3 dan x + 2y = 1 adalah HP : {4, -2}.

    Penyelesaian Soal :

    a. Diketahui : 2x - y = 14

                          x + 3y = 0

    Ditanya : Himpunan penyelesaian

    Jawab :

    LANGKAH PERTAMA (I)

    Buatlah persamaan dengan menggunakan cara sebagai berikut :

    2x - y = 14             .... (Persamaan 1)

    x + 3y = 0             .... (Persamaan 2)

    LANGKAH KEDUA (II)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai y dengan menggunakan cara sebagai berikut :

    2x - y = 14     ║×1║      2x - y = 14

    x + 3y = 0     ║×2║     2x + 6y = 0

    ______________________________ -

                                             -7y = 14

                                                y = [tex]\frac{14}{-7}[/tex]

                                                y = -2

    LANGKAH KETIGA (III)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai x dengan menggunakan cara sebagai berikut :

    2x - y = 14     ║×3║    6x - 3y = 42

    x + 3y = 0     ║×1 ║     x + 3y = 0

    ______________________________ +

                                             7x = 42

                                               x = [tex]\frac{42}{7}[/tex]

                                               x = 6

    ∴ Kesimpulan diperoleh himpunan penyelesaian menggunakan metode eliminasi adalah HP : {6, -2}.

    b. Diketahui : 3x - y = 5

                          x + 3y = 5

    Ditanya : Himpunan penyelesaian

    Jawab :

    LANGKAH PERTAMA (I)

    Buatlah persamaan dengan menggunakan cara sebagai berikut :

    3x - y = 5             .... (Persamaan 1)

    x + 3y = 5             .... (Persamaan 2)

    LANGKAH KEDUA (II)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai x dengan menggunakan cara sebagai berikut :

    3x - y = 5      ║×3║     9x - 3y = 15

    x + 3y = 5     ║×1 ║     x + 3y = 5

    __________________________ +

                                           10x = 20

                                               x = [tex]\frac{20}{10}[/tex]

                                               x = 2

    LANGKAH KETIGA (III)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai y dengan menggunakan cara sebagai berikut :

    3x - y = 5      ║×1║     3x - y = 5

    x + 3y = 5     ║×3║    3x + 9y = 15

    ____________________________ -

                                           -10y = -10

                                               y = [tex]\frac{-10}{-10}[/tex]

                                               y = 1

    ∴ Kesimpulan diperoleh himpunan penyelesaian menggunakan metode eliminasi adalah HP : {2, 1}.

    c. Diketahui : 5x + 2y = 3

                          3x + 2y = 3

    Ditanya : Himpunan penyelesaian

    Jawab :

    LANGKAH PERTAMA (I)

    Buatlah persamaan dengan menggunakan cara sebagai berikut :

    5x + 2y = 3             .... (Persamaan 1)

    3x + 2y = 3             .... (Persamaan 2)

    LANGKAH KEDUA (II)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai x dengan menggunakan cara sebagai berikut :

    5x + 2y = 3

    3x + 2y = 3

    ___________ -

           2x = 0

              x = 0

    LANGKAH KETIGA (III)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai y dengan menggunakan cara sebagai berikut :

    5x + 2y = 3     ║×3║     15x + 6y = 9

    3x + 2y = 3     ║×5║     15x + 10y = 15

    ______________________________ -

                                                 -4y = -6

                                                    y = [tex]\frac{-6}{-4}[/tex]

                                                    y = ³/₂

    ∴ Kesimpulan diperoleh himpunan penyelesaian menggunakan metode eliminasi adalah HP : {0, ³/₂}.

    d. Diketahui : x + y = 3

                          x + 2y = 1

    Ditanya : Himpunan penyelesaian

    Jawab :

    LANGKAH PERTAMA (I)

    Buatlah persamaan dengan menggunakan cara sebagai berikut :

    x + y = 3           .... (Persamaan 1)

    x + 2y = 1             .... (Persamaan 2)

    LANGKAH KEDUA (II)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai x dengan menggunakan cara sebagai berikut :

    x + y = 3      ║×2║     2x + 2y = 6

    x + 2y = 1     ║×1 ║     x + 2y = 1

    __________________________ -

                                              x = 5

    LANGKAH KETIGA (III)

    Eliminasi persamaan 1 dan 2 untuk memperoleh nilai y dengan menggunakan cara sebagai berikut :

    x + y = 3

    x + 2y = 1

    ________ -

        -y = 2

         y = -2

    ∴ Kesimpulan diperoleh himpunan penyelesaian menggunakan metode eliminasi adalah HP : {4, -2}.

    Pelajari Lebih Lanjut :

    Materi tentang persamaan linear dua variabel brainly.co.id/tugas/4695160

    Materi tentang persamaan linear dua variabel https://brainly.co.id/tugas/21084418

    Materi tentang persamaan linear tiga variabel https://brainly.co.id/tugas/24862769

    Materi tentang persamaan linear tiga variabel https://brainly.co.id/tugas/24809892

    Materi tentang persamaan linear metode substitusi https://brainly.co.id/tugas/12675673

    Materi tentang persamaan linear tiga variabel https://brainly.co.id/tugas/14994857

    ----------------------

    Detail Jawaban :

    Kelas : 8

    Mapel : Matematika

    Bab : 5

    Kode : 8.2.5

    Kata Kunci : aljabar, persamaan linear.

    Gambar lampiran jawaban riniadeoct

Pertanyaan Lainnya